方案详情展示

平面显示器/玻璃




  平常很少有人关注玻璃检测有关的任务,可以说是开辟一个新的方向,具有巨大的应用价值,准确识别并分割出场景中的玻璃,不仅能够消除由于玻璃的透明性所导致的对于场景的错误理解,还能够帮助其他的计算机视觉任务(例如深度估计、目标检测和图像反射去除等)提升鲁棒性。
  玻璃在我们的日常生活中非常普遍。但是,现在的计算机视觉任务通常会忽略它。检测玻璃的存在并不容易,关键的挑战是在玻璃后面可能会出现任意物体/场景,并且玻璃区域内的内容通常类似于玻璃后面的内容。玻璃物体可能会对现有视觉系统(例如,深度预测和实例分割)产生重大影响,并会进一步影响许多应用(例如机器人导航和无人机跟踪)中的智能决策,即,机器人/无人机可能撞到玻璃上。因此,视觉系统必须能够从输入图像中检测出玻璃并将其分割。
  我们旨在检测相对较大的透明玻璃,这可能对场景理解起到关键作用。小玻璃物体主要是为了增加多样性。训练/测试分割的玻璃空间分布与整个数据集的玻璃空间分布一致。将玻璃区域的大小定义为图像中像素的比例。